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Constructions of Hadamard Matrices  
Jacob Steepleton  

April 27, 2019  
 

Introduction  
 
In 1933, R. E. A. C. Paley’s paper On Orthogonal Matrices was published. He introduced 

lemmas that contain step-by-step methods to create Hadamard matrices. After searching the 

internet, we could not find any evidence that someone has taken the time to compile a visual 

library of all the matrices that Paley’s lemmas can be used to construct. With this in mind, 

we decided to start a visual library that contained a Hadamard matrix for every order less 

than 100. On Orthogonal Matrices contains the methods to construct every matrix of order 

less than 100 except for 92, but some of the constructions require knowledge of topics with 

which I am unfamiliar. Therefore, we decided to use Paley’s three lemmas that only require 

previous knowledge of quadratic residues mod p, as well as Sylvester’s Construction and 

Williamson matrices to complete this visual library.  

We begin the paper by stating the definition of a real Hadamard matrix and proving two 

important theorems that pertain to Hadamard matrices. Then the various constructions are 

introduced in this order: Sylvester’s Construction, Paley’s Construction, and the Williamson 

Construction. In each section, the lemmas and theorems associated with each construction 

are stated along with the R code that was used to create one of matrices. This R code can be 

easily adapted to construct Hadamard matrices of higher orders if the reader wishes to do 

so. It is important that the R code is only used to create matrices that meet the assumptions 

of each construction. The names of the libraries in R that are needed for the various 

commands are all in the code.  

 

Acknowledgements: Thank you to Dr. Nicoara for entrusting me with this task and 
providing guidance and support along the way.  
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Hadamard Matrices 
 
Hadamard Matrix Definition  A real square matrix H is said to be a real Hadamard matrix if 
all entries of H have absolute value 1 and all rows of H are mutually orthogonal. That is a real 
square matrix 𝐻 = (ℎ) of order n is a Hadamard if  หℎห = 1 for all 𝑖, 𝑗 ≤ 𝑛  and for each pair 
of distinct rows ℎ  and ℎ  of 𝐻, ℎ • ℎ = 0. 

 
 
Examples  

n = 2: ቂ
1 1
1 −1

ቃ      n = 4: ൦

1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

൪ 

 
To check that each pair of distinct rows are mutually orthogonal, we need to check that the 
dot product of each row with every other row is zero. For n = 2, the computation is below. 
Note that • is used to denote the dot product while ⋅ is used to denote multiplication.  
 

(1,1) • (1, −1) = 1 ⋅ 1 + 1 ⋅ (−1) = 0 
 
Therefore, each pair of distinct rows in this matrix of order 2 are mutually orthogonal and 
the matrix consists of 1 and -1, therefore it is a Hadamard matrix. Similarly, it can be shown 
that the matrix above of order 4 is a Hadamard matrix.  
 
Below is a theorem along with its proof from [1] that makes it easy to use software to check 
whether a matrix is a Hadamard matrix. In the examples section towards the end of this 
paper, this computation using Theorem 1 is shown next to each matrix to prove that the 
matrix is a Hadamard matrix. 
 

Theorem 1   Let 𝑋 = (𝑥) be an n x n real matrix whose entries satisfy ห𝑥ห ≤ 1 for all i, j. 

Then |det (𝑋)| ≤ 𝑛


మ . Equality holds if and only if H is a Hadamard matrix.  

 

Proof.  Let 𝑥ଵ, 𝑥ଶ, … , 𝑥 be the rows of a real matrix, X, satisfying the conditions above. The 

rows of X form the sides of a parallelepiped. Therefore, we know that 

det (𝑋) ≤ |𝑥ଵ||𝑥ଶ| ⋅⋅⋅ |𝑥| 

where |𝑥| = (𝑥ଵ
ଶ + 𝑥ଶ

ଶ + ⋯ + 𝑥
ଶ ) 

భ

మ. Because all entries of X satisfy ห𝑥ห ≤ 1, then  

|𝑥| ≤ (𝑛 ⋅ 1)
భ

మ = 𝑛
భ

మ. 

Hence, |det (𝑋)| ≤ |𝑥ଵ||𝑥ଶ| ⋅⋅⋅ |𝑥| ≤ 𝑛 ⋅ 𝑛
భ

మ = 𝑛


మ , so |det(𝑋)| ≤ 𝑛


మ . 

For the second part of the proof, assume that |det(𝑋)| = 𝑛


మ  . Therefore,   

(𝑥ଵଵ
ଶ + ⋯ + 𝑥ଵ

ଶ )
ଵ
ଶ ⋅ (𝑥ଶଵ

ଶ + ⋯ + 𝑥ଶ
ଶ )

ଵ
ଶ ⋅⋅⋅  (𝑥ଵ

ଶ + ⋯ + 𝑥
ଶ )

ଵ
ଶ = 𝑛


ଶ , 
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which means that ห𝑥ห = 1 for all entries of X. We also know that det (𝑋) ≤ |𝑥ଵ||𝑥ଶ| ⋅⋅⋅ |𝑥| 

if and only if each pair of distinct rows are mutually orthogonal, therefore each pair of 

distinct rows are mutually orthogonal. We have a matrix where all entries are 1 or −1 and 

where all the rows are mutually orthogonal, therefore X is a Hadamard matrix. 

If you assume that X is a Hadamard matrix, then using the same logic as above it follows that  

|det(𝑋)| = 𝑛


మ . 

 

To know for which orders a Hadamard matrix exists we use the theorem below and include 

its proof from [2].  

 

Theorem 2 Let m be the order of a Hadamard matrix, apart from when m = 1 or m = 2, it is 

necessary that m should be divisible by 4. 

 

Proof.  Let 𝐻 = (ℎ) be a Hadamard matrix, (0 ≤ i ≤ m - 1, (0 ≤ j ≤ m - 1; m ≥ 3). 

Then, 

 (ℎଵ

ିଵ

ୀ

+ ℎଶ)൫ℎଵ + ℎଷ൯ =   ℎଵ
ଶ

ିଵ

ୀ

= 𝑚 

and 

(ℎଵ + ℎଶ)൫ℎଵ + ℎଷ൯ = 4 or 0. 

We see that it must be 4 for 
ଵ

ସ
m values of j and that m must be divisible by 4. 

 
Immediately after this proof, Paley notes that “it seems probable that, whenever m is 

divisible by 4, it is possible to construct an orthogonal matrix of order m composed of ±1, 

but the general theorem has every appearance of difficulty”. The Hadamard Conjecture states 

that if n is a multiple of 4, then there exists an n x n Hadamard matrix, but this has never been 

proven.  
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Sylvester’s Construction 
 

Theorem 3  If  𝑛 = 2 then we can construct an n x n Hadamard matrix 𝐻  recursively,  

H2n = ቂ
𝐻𝑛 𝐻𝑛
𝐻𝑛 −𝐻𝑛

ቃ. 

 

This theorem follows from the fact that the Kronecker product of two Hadamard matrices is 

a Hadamard matrix. Therefore, matrices of order 2, 4, 8, 16, 32, and 64 can be constructed 

using this theorem. These matrices are shown at the end of this paper and are in blue.  

Below is the code used to construct the Hadamard matrix of order 64 using Sylvester’s 

construction. Note that the matrix of 32 had to have been constructed previously.  
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Paley’s Construction 
 

The three lemmas below and their proofs were found in [2]. 

 

Lemma 1 Let m be of the form p + 1, where 𝑝 ≡ 3(𝑚𝑜𝑑 4) and p is prime. Then we can 

construct a Hadamard matrix of order m.  

 

Proof.  Let 𝜒(n) denote the Legendre symbol (n/p). We write  

                                              ℎ = +1               (𝑖 = 0 𝑜𝑟 𝑗 = 0) 

                                              ℎ = 𝜒(𝑗 − 𝑖)     (1 ≤ 𝑖 ≤ 𝑝, 1 ≤ 𝑗 ≤ 𝑝, 𝑖 ≠ 𝑗) 

                                              ℎ = −1               (1 ≤ 𝑖 ≤ 𝑝) 

 

If 𝑖ଵ and 𝑖ଶ are different and both are greater than 0, we have  

 

(ℎభ)(ℎమ)



ୀ

= (ℎభభ
)(ℎమభ

) + (ℎభమ
)(ℎమమ

) + (ℎభ)(ℎమ) +  𝜒(𝑗 − 𝑖ଵ)𝜒(𝑗 − 𝑖ଶ



ୀଵ

). 

 

The first two terms on the right-hand side of this equation are  

−𝜒(𝑖ଵ − 𝑖ଶ) − 𝜒(𝑖ଶ − 𝑖ଵ) 

and are equal and opposite since 𝑝 ≡ 3(𝑚𝑜𝑑 4), therefore 𝜒(−1) = −1. 

The third term on the right-hand side of the equation is +1 and the last sum is known to be  

−1. Therefore, we have that  

(ℎభ)൫ℎమ൯ = 0     (0 ≠ 𝑖ଵ ≠ 𝑖ଶ).



ୀ

 

 

Now, if 𝑖 ≠ 0,  

(ℎ)൫ℎ൯ =  ℎ



ୀ



ୀ

= ℎ + ℎ +  𝜒(𝑗 − 𝑖) = 0.



ୀଵ

 

 

Therefore, our matrix is orthogonal.  

Using this lemma, Paley constructed the Hadamard matrix of order 12 shown on the next 

page.  
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A note about the Legendre Symbol, 𝜒, to show why this works. 

Let p be a prime. For p > 2, we define 𝜒( 



) to equal 0 if a ≡ 0(mod p), to equal -1 if a ≡

𝑥ଶ(mod p) for some x ∈ Z୮\{0}, and equal to 1 otherwise. Therefore, the Legendre Symbol is 

keeping track of all the nonzero square residues mod p.  

For example, let p = 7 and look at the squares in Z.     

{02, 12, 22, 32, 42, 52, 62} (mod 7) = {0, 1, 4, 2, 2, 4, 1}, remove 0 and we get {1, 2, 4}.  

So, 𝜒(
ଵ


) = 𝜒(

ଶ


) = 𝜒(

ସ


) = −1 and  𝜒(

ଷ


) = 𝜒(

ହ


) = 𝜒(




) = 1. 

Therefore, to create the 8 x 8 Hadamard matrix, we first create a 7 x 7 circulant matrix 

denoted as Q. The first row of Q will have the zeroth entry as +1, and then the first, second, 

... , and sixth entry correspond to the Legendre symbols above. The first, second, and fourth 

entry will be −1, while the third, fifth, and sixth entry will be 1. Because Q is circulant, the 

rest of the matrix is easily constructed. For the 8 x 8 Hadamard matrix, the first row will be 

all +1, the first column will be all -1 except for the first entry, and then Q fills in the rest. This 

matrix is shown below. 

 

ተ

ተ

ተ

1 1 1 1 1 1 1 1
−1 1 −1 −1 1 −1 1 1
−1 1 1 −1 −1 1 −1 1
−1 1 1 1 −1 −1 1 −1
−1 −1 1 1 1 −1 −1 1
−1 1 −1 1 1 1 −1 −1
−1 −1 1 −1 1 1 1 −1
−1 −1 −1 1 −1 1 1 1

ተ

ተ

ተ
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Below is the code used to create 12 x 12 Hadamard matrix from Lemma 1 and comments 

were added to aid the reader.  
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Using Theorem 1, we are able to confirm whether or not the code worked by computing the 

determinant of the matrix (using the det() function in R) and then computing 𝑛


మ  and 

checking that the absolute value of the determinant equals 𝑛


మ . 

Matrices formed using this construction are at the end of this paper in red.  

 

Lemma 2  Let m be divisible by 4 and of the form 2(𝑝 + 1), where p is prime. Then we can 

construct a Hadamard matrix of order m.  

 

For this construction we may assume that p ≡ 1(mod 4).  

 

Proof.  Let H = (h୧୨) denote a matrix of order p + 1. Fill in the elements of H using the 

following rules: 

                                                        ℎ = ℎ = 1     (1 ≤ 𝑖 ≤ 𝑝), 

                                                        ℎ = 𝜒(𝑗 − 𝑖)    (1 ≤ 𝑖 ≤ 𝑝, 1 ≤ 𝑗 ≤ 𝑝, 𝑖 ≠ 𝑗), 

                                                        ℎ = 0                 (0 ≤ 𝑖 ≤ 𝑝). 

 

Then substitute the matrices   

ቂ
1 1
1 −1

ቃ, ቂ
−1 −1
−1 1

ቃ, and ቂ
1 −1

−1 −1
ቃ, 

respectively for 1, −1, and 0 in the matrix H. The resulting matrix is a Hadamard matrix of 

order 2୩(p + 1).  
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Below is the code to create the Hadamard matrix of order 28 using Lemma 2. 

 

 

 

Lemma 3  If we have a Hadamard matrix of order 𝑛ଵ and a Hadamard matrix of order 𝑛ଶ 

then we may construct a Hadamard matrix of order 𝑛ଵ𝑛ଶ. 

 

Paley laid out how to do this in the proof below.  

Let 𝐻ଵ denote the matrix of order ℎଵ and −𝐻ଵ denote the same matrix with +1 and −1 

interchanged. Let 𝐻ଶ denote the matrix of order ℎଶ. Now for each element equal to +1 in 𝐻ଶ 
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we substitute the matrix  𝐻ଵ and for each −1 we substitute the matrix −𝐻ଵ. The resulting 

square matrix is of order ℎଵℎଶ and is orthogonal. The proof is immediate.  

 

The method he described is the same thing as computing the Kronecker product of two 

matrices. Say A and B are two matrices where A is a matrix of order m ⋅ n, then their 

Kronecker product 𝐴 ⊗ 𝐵 is  

 

⎣
⎢
⎢
⎢
⎢
⎡

𝑎ଵଵ𝐵 𝑎ଵଶ𝐵 𝑎ଵଷ𝐵 ⋯ ⋯ 𝑎ଵ𝐵
𝑎ଶଵ𝐵 𝑎ଶଶ𝐵 𝑎ଶଷ𝐵 ⋯ ⋯ 𝑎ଶ𝐵
𝑎ଷଵ𝐵 𝑎ଷଶ𝐵 𝑎ଷଷ𝐵 ⋯ ⋯ 𝑎ଷ𝐵

⋮ ⋮ ⋮ ⋮ ⋮ ⋮
⋮ ⋮ ⋮ ⋮ ⋮ ⋮

𝑎ଵ𝐵 𝑎ଶ𝐵 𝑎ଷ𝐵 ⋯ ⋯ 𝑎𝐵⎦
⎥
⎥
⎥
⎥
⎤

. 

 

If A and B are matrices with only 1 and −1, then this is the same method that Paley described. 

We will now lay out a concrete example showing this computation with two Hadamard 

matrices of order 2 and 4.  

 

𝐴 =  ቂ
1 1
1 −1

ቃ  𝑎𝑛𝑑 𝐵 =  ൦

1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

൪ 

 

𝐴 ⊗ 𝐵 =  

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
1 1 1 1 1 1 1 1
1 −1 1 −1 1 −1 1 −1
1 1 −1 −1 1 1 −1 −1
1 −1 −1 1 1 −1 −1 1
1 1 1 1 −1 −1 −1 −1
1 −1 1 −1 −1 1 −1 1
1 1 −1 −1 −1 −1 1 1
1 −1 −1 1 −1 1 1 −1⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

 

We replaced the three entries equal to +1 in A with the matrix B, and then replaced the −1 

entry of A with the matrix -B just as Paley described.  

 

Matrices of this form are at the end of the Examples section in green and white.  
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Hadamard Matrices of Order 52 and 92 - The Williamson Construction  

 
An introduction to the Williamson Construction along with a list of the papers which have 

contributed to it over the years can be found in [3]. 

 
Theorem 4  Suppose there exist n x n matrices A, B, C, and D that satisfy the following 

properties:  

 A, B, C, and D are symmetric matrices having entries +/- 1; 

 The matrices A, B, C, and D commute; 

 A2 + B2 + C2 + D2 = 4nIn.  

Then there is a Hadamard matrix of order 4n given by  

 

H = ൦

𝐴 𝐵 𝐶 𝐷
−𝐵 𝐴 𝐷 −𝐶
−𝐶 −𝐷 𝐴 𝐵
−𝐷 𝐶 −𝐵 𝐴

൪. 

 

We will now list the first row of the four 13 x 13 circulant matrices, found in [4], which lead 

to the construction of the Hadamard matrix of order 52. 

A = (1, -1, -1, -1, -1, 1, -1, -1, 1, -1, -1, -1, -1) 

B = (1, 1, -1, 1, -1, -1, 1, 1, -1, -1, 1, -1, 1) 

C = (1, -1, -1, -1, 1, 1, 1, 1, 1, 1, -1, -1, -1) 

D = (1, -1, 1, -1, -1, 1, 1, 1, 1, -1, -1, 1, -1) 

Below is the Hadamard matrix of order 52 using the matrices A, B, C, and D as defined above.  
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There are four matrices of order 23 which satisfy this equation. Therefore, we can use these 

to construct the Hadamard matrix of order 92. Leonard Baumert, S. W. Golomb, and Marshall 

Hall Jr. first introduced these matrices in [5]. The four matrices are circulant and below are 

their first rows along with the Hadamard matrix of order 92.  

 

A = (1, 1, -1, -1, -1, 1, -1, -1, -1, 1, -1, 1, 1, -1, 1, -1, -1, -1, 1, -1, -1, -1, 1)  

B = (1, -1, 1, 1, -1, 1, 1, -1, -1, 1, 1, 1, 1, 1, 1, -1, -1, 1, 1, -1, 1, 1, -1)  

C = (1, 1, 1, -1, -1, -1, 1, 1, -1, 1, -1, 1, 1, -1, 1, -1, 1, 1, -1, -1, -1, 1, 1)  

D = (1, 1, 1, -1, 1, 1, 1, -1, 1, -1, -1, -1, -1, -1, -1, 1, -1, 1, 1, 1, -1, 1, 1)  

 

 
 

 
 

The code used to create these two matrices was omitted because it only consists of defining 

the matrices and then binding together the proper rows and columns.  
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Visual Library   

 

 
Sylvester Matrices  

 

Below are the Hadamard matrices of order 2, 4, 8, 16, 32, and 64 that were constructed 

using Sylvester’s Construction.   

 

 2 x 2 Hadamard matrix  

  
 4 x 4 Hadamard matrix  

  
 8 x 8 Hadamard matrix  
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 16 x 16 Hadamard matrix  

  
 32 x 32 Hadamard matrix  

  
 64 x 64 Hadamard matrix  
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Paley Matrices  
  
Below are the Hadamard matrices of order  4, 8, 12, 20, 24, 32, 44, 48, 60, 68, 72, and 80 
where n = p + 1, p is prime, and p ≡ 3 (mod 4).  
 

 4 x 4 Hadamard matrix 

  
 

 8 x 8 Hadamard matrix 

  
 

 12 x 12 Hadamard matrix 
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 20 x 20 Hadamard matrix 

  
 

 24 x 24 Hadamard matrix 

  
 

 32 x 32 Hadamard matrix  

  
 

 
 



17 
 

 44 x 44 Hadamard matrix  

  
 

 48 x 48 Hadamard matrix  

  
 

 60 x 60 Hadamard matrix  
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 68 x 68 Hadamard matrix  

 
 

 72 x 72 Hadamard matrix  

 
 

 80 x 80 Hadamard matrix  
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Below are the Hadamard matrices of order 28, 36, 76, and 84. These matrices are for the 

case where p ≡ 1(mod 4) and the order of the matrix is equal to 2(p + 1). 

 

 28 x 28 Hadamard matrix  

 
 

 36 x 36 Hadamard matrix  

 
 

 76 x 76 Hadamard matrix  
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 84 x 84 Hadamard matrix  

 
 
 
Below are the Hadamard matrices of order 40, 56, 88, and 96. These were constructed 
using Lemma 3 with Hadamard matrices previously shown in this paper.  
 

 40 x 40 Hadamard matrix  

 
 56 x 56 Hadamard matrix 
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 88 x 88 Hadamard matrix  

  
 

 96 x 96 Hadamard matrix  
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